Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Transboundary and Emerging Diseases ; 2023, 2023.
Article in German | ProQuest Central | ID: covidwho-20242039

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from wildlife has raised concerns about spillover from humans to animals, the establishment of novel wildlife reservoirs, and the potential for future outbreaks caused by variants of wildlife origin. Norway rats (Rattus norvegicus) are abundant in urban areas and live in close proximity to humans, providing the opportunity for spillover of SARS-CoV-2. Evidence of SARS-CoV-2 infection and exposure has been reported in Norway rats. We investigated SARS-CoV-2 infection and exposure in Norway rats from Southern Ontario, Canada. From October 2019 to June 2021, 224 rats were submitted by collaborating pest control companies. The majority of samples were collected in Windsor (79.9%;n = 179), Hamilton (13.8%;n = 31), and the Greater Toronto Area (5.8%;n = 13). Overall, 50.0% (n = 112) were female and most rats were sexually mature (55.8%;n = 125). Notably, 202 samples were collected prior to the emergence of variants of concern (VOC) and 22 were collected while the Alpha variant (B.1.1.7) was the predominant circulating VOC in humans. Nasal turbinate (n = 164) and small intestinal (n = 213) tissue samples were analyzed for SARS-CoV-2 RNA by RT-PCR. Thoracic cavity fluid samples (n = 213) were tested for neutralizing antibodies using a surrogate virus neutralization test (sVNT) (GenScript cPass);confirmatory plaque reduction neutralization test (PRNT) was conducted on presumptive positive samples. We did not detect SARS-CoV-2 RNA in any samples tested. Two out of eleven samples positive on sVNT had neutralizing antibodies confirmed positive by PRNT (1 : 40 and 1 : 320 PRNT70);both were collected prior to the emergence of VOC. It is imperative that efforts to control and monitor SARS-CoV-2 include surveillance of rats and other relevant wildlife species as novel variants continue to emerge.

2.
Infect Control Hosp Epidemiol ; : 1-3, 2022 May 23.
Article in English | MEDLINE | ID: covidwho-20237609

ABSTRACT

Among outpatients with coronavirus disease 2019 (COVID-19) due to the severe acute respiratory coronavirus virus 2 (SARS-CoV-2) δ (delta) variant who did and did not receive 2 vaccine doses at 7 days after symptom onset, there was no difference in viral shedding (cycle threshold difference 0.59, 95% CI, -4.68 to 3.50; P = .77) with SARS-CoV-2 cultured from 2 (7%) of 28 and 1 (4%) of 26 outpatients, respectively.

3.
Research (Wash D C) ; 6: 0124, 2023.
Article in English | MEDLINE | ID: covidwho-20239020

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 virus is an ongoing global health burden. Severe cases of COVID-19 and the rare cases of COVID-19 vaccine-induced-thrombotic-thrombocytopenia (VITT) are both associated with thrombosis and thrombocytopenia; however, the underlying mechanisms remain inadequately understood. Both infection and vaccination utilize the spike protein receptor-binding domain (RBD) of SARS-CoV-2. We found that intravenous injection of recombinant RBD caused significant platelet clearance in mice. Further investigation revealed the RBD could bind platelets, cause platelet activation, and potentiate platelet aggregation, which was exacerbated in the Delta and Kappa variants. The RBD-platelet interaction was partially dependent on the ß3 integrin as binding was significantly reduced in ß3-/- mice. Furthermore, RBD binding to human and mouse platelets was significantly reduced with related αIIbß3 antagonists and mutation of the RGD (arginine-glycine-aspartate) integrin binding motif to RGE (arginine-glycine-glutamate). We developed anti-RBD polyclonal and several monoclonal antibodies (mAbs) and identified 4F2 and 4H12 for their potent dual inhibition of RBD-induced platelet activation, aggregation, and clearance in vivo, and SARS-CoV-2 infection and replication in Vero E6 cells. Our data show that the RBD can bind platelets partially though αIIbß3 and induce platelet activation and clearance, which may contribute to thrombosis and thrombocytopenia observed in COVID-19 and VITT. Our newly developed mAbs 4F2 and 4H12 have potential not only for diagnosis of SARS-CoV-2 virus antigen but also importantly for therapy against COVID-19.

5.
Emerg Infect Dis ; 29(7): 1386-1396, 2023 07.
Article in English | MEDLINE | ID: covidwho-20237258

ABSTRACT

Isolating and characterizing emerging SARS-CoV-2 variants is key to understanding virus pathogenesis. In this study, we isolated samples of the SARS-CoV-2 R.1 lineage, categorized as a variant under monitoring by the World Health Organization, and evaluated their sensitivity to neutralizing antibodies and type I interferons. We used convalescent serum samples from persons in Canada infected either with ancestral virus (wave 1) or the B.1.1.7 (Alpha) variant of concern (wave 3) for testing neutralization sensitivity. The R.1 isolates were potently neutralized by both the wave 1 and wave 3 convalescent serum samples, unlike the B.1.351 (Beta) variant of concern. Of note, the R.1 variant was significantly more resistant to type I interferons (IFN-α/ß) than was the ancestral isolate. Our study demonstrates that the R.1 variant retained sensitivity to neutralizing antibodies but evolved resistance to type I interferons. This critical driving force will influence the trajectory of the pandemic.


Subject(s)
COVID-19 , Interferon Type I , Humans , SARS-CoV-2/genetics , Interferon Type I/genetics , Antibodies, Neutralizing , COVID-19 Serotherapy , Canada/epidemiology , Antibodies, Viral , Spike Glycoprotein, Coronavirus
6.
Sci Transl Med ; 15(697): eadf4549, 2023 05 24.
Article in English | MEDLINE | ID: covidwho-20233638

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has been responsible for a global pandemic. Monoclonal antibodies (mAbs) have been used as antiviral therapeutics; however, these therapeutics have been limited in efficacy by viral sequence variability in emerging variants of concern (VOCs) and in deployment by the need for high doses. In this study, we leveraged the multi-specific, multi-affinity antibody (Multabody, MB) platform, derived from the human apoferritin protomer, to enable the multimerization of antibody fragments. MBs were shown to be highly potent, neutralizing SARS-CoV-2 at lower concentrations than their corresponding mAb counterparts. In mice infected with SARS-CoV-2, a tri-specific MB targeting three regions within the SARS-CoV-2 receptor binding domain was protective at a 30-fold lower dose than a cocktail of the corresponding mAbs. Furthermore, we showed in vitro that mono-specific MBs potently neutralize SARS-CoV-2 VOCs by leveraging augmented avidity, even when corresponding mAbs lose their ability to neutralize potently, and that tri-specific MBs expanded the neutralization breadth beyond SARS-CoV-2 to other sarbecoviruses. Our work demonstrates how avidity and multi-specificity combined can be leveraged to confer protection and resilience against viral diversity that exceeds that of traditional monoclonal antibody therapies.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Humans , Animals , Mice , SARS-CoV-2 , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antiviral Agents
7.
Front Pharmacol ; 14: 1124693, 2023.
Article in English | MEDLINE | ID: covidwho-2317756

ABSTRACT

SARS-CoV-2-mediated interactions with drug metabolizing enzymes and membrane transporters (DMETs) in different tissues, especially lung, the main affected organ may limit the clinical efficacy and safety profile of promising COVID-19 drugs. Herein, we investigated whether SARS-CoV-2 infection could dysregulate the expression of 25 clinically relevant DMETs in Vero E6 cells and postmortem lung tissues from COVID-19 patients. Also, we assessed the role of 2 inflammatory and 4 regulatory proteins in modulating the dysregulation of DMETs in human lung tissues. We showed for the first time that SARS-CoV-2 infection dysregulates CYP3A4 and UGT1A1 at the mRNA level, as well as P-gp and MRP1 at the protein level, in Vero E6 cells and postmortem human lung tissues, respectively. We observed that at the cellular level, DMETs could potentially be dysregulated by SARS-CoV-2-associated inflammatory response and lung injury. We uncovered the pulmonary cellular localization of CYP1A2, CYP2C8, CYP2C9, and CYP2D6, as well as ENT1 and ENT2 in human lung tissues, and observed that the presence of inflammatory cells is the major driving force for the discrepancy in the localization of DMETs between COVID-19 and control human lung tissues. Because alveolar epithelial cells and lymphocytes are both sites of SARS-CoV-2 infection and localization of DMETs, we recommend further investigation of the pulmonary pharmacokinetic profile of current COVID-19 drug dosing regimen to improve clinical outcomes.

8.
Open Forum Infect Dis ; 10(5): ofad190, 2023 May.
Article in English | MEDLINE | ID: covidwho-2316229

ABSTRACT

Background: COVID-19 presents with a breadth of symptomatology including a spectrum of clinical severity requiring intensive care unit (ICU) admission. We investigated the mucosal host gene response at the time of gold standard COVID-19 diagnosis using clinical surplus RNA from upper respiratory tract swabs. Methods: Host response was evaluated by RNA-sequencing, and transcriptomic profiles of 44 unvaccinated patients including outpatients and in-patients with varying levels of oxygen supplementation were included. Additionally, chest X-rays were reviewed and scored for patients in each group. Results: Host transcriptomics revealed significant changes in the immune and inflammatory response. Patients destined for the ICU were distinguished by the significant upregulation of immune response pathways and inflammatory chemokines, including cxcl2 which has been linked to monocyte subsets associated with COVID-19 related lung damage. In order to temporally associate gene expression profiles in the upper respiratory tract at diagnosis of COVID-19 with lower respiratory tract sequalae, we correlated our findings with chest radiography scoring, showing nasopharygeal or mid-turbinate sampling can be a relevant surrogate for downstream COVID-19 pneumonia/ICU severity. Conclusions: This study demonstrates the potential and relevance for ongoing study of the mucosal site of infection of SARS-CoV-2 using a single sampling that remains standard of care in hospital settings. We highlight also the archival value of high quality clinical surplus specimens, especially with rapidly evolving COVID-19 variants and changing public health/vaccination measures.

10.
Anal Chem ; 95(14): 5877-5885, 2023 04 11.
Article in English | MEDLINE | ID: covidwho-2267171

ABSTRACT

Designing diagnostic assays to genotype rapidly mutating viruses remains a challenge despite the overall improvements in nucleic acid detection technologies. RT-PCR and next-generation sequencing are unsuitable for genotyping during outbreaks or in point-of-care detection due to their infrastructure requirements and longer turnaround times. We developed a quantum dot barcode multiplexing system to genotype mutated viruses. We designed multiple quantum dot barcodes to target conserved, wildtype, and mutated regions of SARS-CoV-2. We calculated ratios of the signal output from different barcodes that enabled SARS-CoV-2 detection and identified SARS-CoV-2 variant strains from a sample. We detected different sequence types, including conserved genes, nucleotide deletions, and single nucleotide substitutions. Our system detected SARS-CoV-2 patient specimens with 98% sensitivity and 94% specificity across 91 patient samples. Further, we leveraged our barcoding and ratio system to track the emergence of the N501Y SARS-CoV-2 mutation from December 2020 to May 2021 and demonstrated that the more transmissible N501Y mutation started to dominate infections by April 2021. Our barcoding and signal ratio approach can genotype viruses and track the emergence of viral mutations in a single diagnostic test. This technology can be extended to tracking other viruses. Combined with smartphone detection technologies, this assay can be adapted for point-of-care tracking of viral mutations in real time.


Subject(s)
COVID-19 , Nucleic Acids , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Genotype , Nucleotides , Mutation
13.
Heliyon ; 9(1): e12744, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2165334

ABSTRACT

SARS-CoV-2 depends on host cell components for infection and replication. Identification of virus-host dependencies offers an effective way to elucidate mechanisms involved in viral infection and replication. If druggable, host factor dependencies may present an attractive strategy for anti-viral therapy. In this study, we performed genome wide CRISPR knockout screens in Vero E6 cells and four human cell lines including Calu-3, UM-UC-4, HEK-293 and HuH-7 to identify genetic regulators of SARS-CoV-2 infection. Our findings identified only ACE2, the cognate SARS-CoV-2 entry receptor, as a common host dependency factor across all cell lines, while other host genes identified were largely cell line specific, including known factors TMPRSS2 and CTSL. Several of the discovered host-dependency factors converged on pathways involved in cell signalling, immune-related pathways, and chromatin modification. Notably, the chromatin modifier gene KMT2C in Calu-3 cells had the strongest impact in preventing SARS-CoV-2 infection when perturbed.

14.
Intensive Care Res ; : 1-12, 2022 Nov 09.
Article in English | MEDLINE | ID: covidwho-2119895

ABSTRACT

Cases of vaccine breakthrough, especially in variants of concern (VOCs) infections, are emerging in coronavirus disease (COVID-19). Due to mutations of structural proteins (SPs) (e.g., Spike proteins), increased transmissibility and risk of escaping from vaccine-induced immunity have been reported amongst the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Remdesivir was the first to be granted emergency use authorization but showed little impact on survival in patients with severe COVID-19. Remdesivir is a prodrug of the nucleoside analogue GS-441524 which is converted into the active nucleotide triphosphate to disrupt viral genome of the conserved non-structural proteins (NSPs) and thus block viral replication. GS-441524 exerts a number of pharmacological advantages over Remdesivir: (1) it needs fewer conversions for bioactivation to nucleotide triphosphate; (2) it requires only nucleoside kinase, while Remdesivir requires several hepato-renal enzymes, for bioactivation; (3) it is a smaller molecule and has a potency for aerosol and oral administration; (4) it is less toxic allowing higher pulmonary concentrations; (5) it is easier to be synthesized. The current article will focus on the discussion of interactions between GS-441524 and NSPs of VOCs to suggest potential application of GS-441524 in breakthrough SARS-CoV-2 infections. Supplementary Information: The online version contains supplementary material available at 10.1007/s44231-022-00021-4.

15.
Nat Microbiol ; 7(12): 2011-2024, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2117568

ABSTRACT

Wildlife reservoirs of broad-host-range viruses have the potential to enable evolution of viral variants that can emerge to infect humans. In North America, there is phylogenomic evidence of continual transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from humans to white-tailed deer (Odocoileus virginianus) through unknown means, but no evidence of transmission from deer to humans. We carried out an observational surveillance study in Ontario, Canada during November and December 2021 (n = 300 deer) and identified a highly divergent lineage of SARS-CoV-2 in white-tailed deer (B.1.641). This lineage is one of the most divergent SARS-CoV-2 lineages identified so far, with 76 mutations (including 37 previously associated with non-human mammalian hosts). From a set of five complete and two partial deer-derived viral genomes we applied phylogenomic, recombination, selection and mutation spectrum analyses, which provided evidence for evolution and transmission in deer and a shared ancestry with mink-derived virus. Our analysis also revealed an epidemiologically linked human infection. Taken together, our findings provide evidence for sustained evolution of SARS-CoV-2 in white-tailed deer and of deer-to-human transmission.


Subject(s)
COVID-19 , Deer , Animals , Humans , SARS-CoV-2/genetics
16.
J Assoc Med Microbiol Infect Dis Can ; 5(4): 214-222, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-2109649

ABSTRACT

We provide an update to the Association of Medical Microbiology and Infectious Disease Canada foundation guidance for the upcoming 2020-2021 influenza season in Canada. Important issues for this year include the implications of co-circulation of SARS-CoV-2, the role of diagnostic testing, and a restatement of dosing and administration recommendations for neuraminidase inhibitors in various age groups and underlying health conditions. Although peramivir and baloxivir are now licensed in Canada, neither is currently marketed, so this guidance focuses on further optimizing the use of oseltamivir and zanamivir.


Nous actualisons l'information sur les directives de la Fondation de l'Association pour la microbiologie médicale et l'infectiologie Canada en vue de la saison grippale 2020­2021 au Canada. Cette année, les enjeux importants touchent les conséquences de la co-circulation de la maladie à coronavirus 2019, le rôle des tests diagnostiques et la réaffirmation des recommandations relatives aux maladies sous-jacentes ainsi qu'à la posologie et à l'administration des inhibiteurs de la neuraminidase dans divers groupes d'âge. Même si le péramivir et le baloxivir sont désormais homologués au Canada, ces médicaments n'y sont pas encore commercialisés, et c'est pourquoi les présentes directives visent à optimiser l'utilisation de l'oseltamivir et du zanamivir.

17.
Open Forum Infect Dis ; 9(12): ofac564, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2107556

ABSTRACT

Lower viral loads were observed in the upper respiratory tract of patients infected with BA.1, whereas patients infected with BA.2 and BA.5 had comparable viral loads to those seen with Alpha or Delta. This suggests that viral loads are likely not responsible for the increased transmission of the Omicron lineages.

18.
Journal of the Association of Medical Microbiology and Infectious Disease Canada = Journal officiel de l'Association pour la microbiologie medicale et l'infectiologie Canada ; 6(4):259-268, 2022.
Article in English | EuropePMC | ID: covidwho-2102859

ABSTRACT

Background Most individuals with coronavirus disease 2019 (COVID-19) experience mild symptoms and are managed in the outpatient setting. The aim of this study was to determine whether self-reported symptoms at the time of diagnosis can identify patients at risk of clinical deterioration. Methods This was a retrospective cohort study of 671 outpatients with laboratory-confirmed COVID-19 diagnosed in Toronto between March 1 and October 16, 2020. We examined the association between patients’ baseline characteristics and self-reported symptoms at the time of diagnosis and the risk of subsequent hospitalization. Results Of 671 participants, 26 (3.9%) required hospitalization. Individuals aged 65 years or older were more likely to require hospitalization (odds ratio [OR] 5.29, 95% CI 2.19 to 12.77), whereas those without medical comorbidities were unlikely to be hospitalized (OR 0.02, 95% CI 0.00 to 0.17). After adjusting for age and presence of comorbidities, sputum production (adjusted OR [aOR] 5.01, 95% CI 1.97 to 12.75), arthralgias (aOR 4.82, 95% CI 1.85 to 12.53), diarrhea (aOR 4.56, 95% CI 1.82 to 11.42), fever (aOR 3.64, 95% CI 1.50 to 8.82), chills (aOR 3.62, 95% CI 1.54 to 8.50), and fatigue (aOR 2.59, 95% CI 1.04 to 6.47) were associated with subsequent hospitalization. Conclusions Early assessment of symptoms among outpatients with COVID-19 can help identify individuals at risk of clinical deterioration. Additional studies are needed to determine whether more intense follow-up and early intervention among high-risk individuals can alter the clinical trajectory of and outcomes among outpatients with COVID-19.

19.
Journal of the Association of Medical Microbiology and Infectious Disease Canada = Journal officiel de l'Association pour la microbiologie medicale et l'infectiologie Canada ; 5(4):214-222, 2022.
Article in English | EuropePMC | ID: covidwho-2102334

ABSTRACT

We provide an update to the Association of Medical Microbiology and Infectious Disease Canada foundation guidance for the upcoming 2020–2021 influenza season in Canada. Important issues for this year include the implications of co-circulation of SARS-CoV-2, the role of diagnostic testing, and a restatement of dosing and administration recommendations for neuraminidase inhibitors in various age groups and underlying health conditions. Although peramivir and baloxivir are now licensed in Canada, neither is currently marketed, so this guidance focuses on further optimizing the use of oseltamivir and zanamivir.

20.
J Infect ; 85(6): 666-670, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2082659

ABSTRACT

OBJECTIVES: SARS-CoV-2 shedding has changed as new variants have emerged. It is important to understand the trajectory of PCR positivity due to Omicron in vaccinated populations. METHODS: Double- or triple-vaccinated adult household contacts of individuals with COVID-19 self-collected oral-nasal swabs for 14 days. A hierarchical linear model estimated viral load trajectories and an exploratory logistic regression model assessed for factors associated with viral detection before symptom onset. RESULTS: Forty-one participants developed COVID-19 with 37 (90%) symptomatic. Viral load peaked 3 days after symptom onset at a median concentration of 8.83 log10 copies/milliliter (range 5.95-10.32) and the mean difference between participants with two or three COVID-19 vaccine doses was 0.02 log10 copies/milliliter (95% CI -0.13 to 0.16). PCR positivity began with a range of 4 days prior to 3 days after symptom onset and was positive on the day of symptom onset in 76% (28/37). SARS-CoV-2 detection on the day of symptom onset was less likely among those with 2 vaccine doses (OR 0.13, 95%CI 0.02-0.79). 68% (25/37) of infected participants had detectable SARS-CoV-2 with Ct<30 at 7 days after symptom onset. CONCLUSIONS: Peak viral load and duration of PCR positivity were similar in participants with COVID-19 after two versus three COVID-19 vaccine doses. Onset of viral detection relative to symptom onset was variable.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , SARS-CoV-2 , COVID-19/prevention & control , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL